Hg(II)-, Hg(I)-, AND Ag(I)-INDUCED 1,8-DIALKOXYLATION, -DIAMINATION, AND -DIACYLOXYLATION OF 2,7-DI-TERT-BUTYL-4,5,9,10-TETRAPHENYLTRICYCLO [6.2.0.0] DECA-1,3(6),4,7,9-PENTAENE

Yoshikazu TAKEHIRA, Koichi TANAKA, and Fumio TODA

Department of Industrial Chemistry, Faculty of Engineering, Ehime University,

Bunkyo-cho, Matsuyama 790

The treatment of the title compound (1) with Hg(II), Hg(I), or Ag(I) salt in the presence of ROH, RNH₂, and RCO₂H afforded 5,10-dialkoxy- (2a-c), 5,10-diamino- (2d-e), and 5,10-diacyloxy-2,7-di-tert-butyl-4,5,9,10-tetra-phenyltricyclo [6.2.0.0] deca-1,3,6,8-tetraene (2f-g), respectively.

We now report novel Hg(II)-, Hg(I)-, and Ag(I)-induced 1,8-dialkoxylation, -diamination, and -diacyloxylation reactions of the title compound $(\underline{1})$.

Treatment of $\underline{1}$ (0.5 g) with two molar amounts of $\mathrm{Hg}(\mathrm{OAc})_2$ and three molar amounts of nucleophile (NuH) in xylenes (5 ml) at room temperature for 15-60 min afforded 5,10-di-Nusubstituted 2,7-di-tert-butyl-4,5,9,10-tetraphenyltricyclo $\begin{bmatrix} 6.2.0.0 \end{bmatrix}$ deca-1,3,6,8-tetraene ($\underline{2}$) as yellow crystals in the yields summarized in Table 1.

Table 1. Reaction Conditions, and Yields, Melting Points, and Spectral Data of 2							
React	ion		Yield	Мр	Nujol	λCHCl max 3	apa?
NuH time	(min)	Product	(%)	(oc)	(cm ⁻¹)	nm $(\epsilon \times 10^{-2})$	τ ^{CDCl} 3 (ppm)
MeOH	15	<u>2a</u>	68	222	1070 and	260 (69)	2.3-3.1 (m, Ph)
					1090 (ether)	358 (305)	6.42 (s, Me), 9.05 (s, Bu ^t)
EtOH	60	<u>2b</u>	31	219	1070 and	264 (83)	2.6 (m, Ph), 6.13 (q, CH ₂)
					1095 (ether)	359 (331)	8.68 (t, Me), 9.05 (s, Bu ^t)
PhOH	15	<u>2c</u>	46	256	1220 (=C-O-)	360 (384)	2.2-3.7 (m, Ph)
					1060 (ether)		9.15 (s, Bu ^t)
PhNH ₂	15	<u>2d</u>	74	278	3400 (NH)	260 sh (300)	2.4-3.4 (m, Ph)
~					1300 (C-N)	358 (413)	5.54 (bs, NH), 9.18 (s, Bu ^t)
4-Me-C ₆ H ₄ NH	, 15	<u>2e</u>	63	282	3390 (NH)	356 (400)	3.0 (m, Ph), 4.15 (bs, NH)
0.4 /	~				1300 (C-N)		7.64 (s, Me), 9.14 (s, Bu ^t)
AcOH	30	<u>2f</u>	55	260	1740 (C=O)	268 (234)	2.3-3.3 (m, Ph)
					1230 (ester)	355 (160)	7.88 (s, Me), 9.15 (s, Bu ^t)
PhCO ₂ H	60	<u>2g</u>	17	256	1730 (C=O)	265 (120)	2.1 (m, Ph), 9.06 (s, Bu ^t)
~					1270 (ester)	360 (390)	2)

The spectral data of <u>2g</u> were identical to those of the authentic sample which has been previously prepared by 1,8-conjugate addition of benzoyl peroxide to <u>1</u>. The UV spectral data of <u>13</u> and <u>13</u> were comparable to those of <u>2g</u>. The C-NMR spectrum of <u>2a</u> showed the presence of four kinds of saturated carbons; 29.73 (Me of Bu^t, q), 33.04 (tert-carbon of Bu^t, s), 51.36 (MeO, q), and 92.00 ppm (cyclobutene, s). Stereochemical relationship between the two Nu groups of <u>2</u> was uncertain.

Almost the same results as summarized in Table 1 were obtained by using Hg(I) or Ag(I) salt instead of $Hg(OAc)_2$. For example, reaction of $\underline{1}$ with MeOH in the presence of Hg_2Cl_2 and AgOAc afforded $\underline{2a}$ in 63 and 82% yields, respectively. Furthermore, when an equimolar amount of $Hg(OAc)_2$ was used for this reaction, $\underline{2a}$ and Hg(O) were obtained in 68 and 82% yields, respectively. The formation of $\underline{2}$ can be interpreted by means of one-electron oxidation process. Attack of NuH on the radical cation ($\underline{2}$) initially formed by one-electron oxidation of $\underline{1}$ forms radical ($\underline{4}$). The second oxidation of the radical ($\underline{5}$) derived from $\underline{4}$ gives cation ($\underline{6}$), which then reacts with NuH to afford $\underline{2}$. The pathway which proceeds via the dication ($\underline{7}$) is also considerable.

References

¹⁾ F. Toda and M. Ohi, Chem. Comm., 1975, 506.

²⁾ F. Toda, K. Tanaka, and T. Yoshioka, Chem. Lett., 1976, 657.